|
|
|
|
移动端

别人在抢红包,程序员在研究红包算法

抛开微信红包的市场价值不谈,红包本身的算法也引发了热议,由于官方没有给出明确的说法,各家也是众说纷纭,小编下面也为大家带来几种分析。

作者:陈庆翔来源:知乎整理|2015-02-27 15:19


微信红包在羊年春节的火爆程度不言而喻,广告主投入5亿现金红包,与央视羊年春晚独家合作起到了巨大的推动作用。这就像一针大补丸,在短时间内给微信带来了极大的关注度与流量。除夕全天微信用户红包总发送量达到10.1亿次,摇一摇互动量达到110亿次,红包峰值发送量为8.1亿次/分钟。

抛开微信红包的市场价值不谈,红包本身的算法也引发了热议,由于官方没有给出明确的说法,各家也是众说纷纭,小编下面也为大家带来几种分析。

首先看看数据分析帝

大多数人都做出自己的猜测,这也是在不知道内部随机算法的时候的唯一选择,但是大多数人没有给出自己亲自的调查结果。这里给出一份100样本的调查抽样样本数据,并提出自己的猜测。

1. 钱包钱数满足截尾正态随机数分布。大致为在截尾正态分布中取随机数,并用其求和数除以总价值,获得修正因子,再用修正因子乘上所有的随机数,得到红包价值。

这种分布意味着:低于平均值的红包多,但是离平均值不远;高于平均值的红包少,但是远大于平均值的红包偏多。

图1. 钱包价值与其频率分布直方图及其正态拟合

但看分布直方图并不能推出它符合正态分布,但是考虑到程序的简洁性和随机数的合理性,这是最合乎情理的一种猜测。

越是后面的钱包,价值普遍更高

图2. 钱包序列数与其价值关系曲线

从图2中的线性拟合红线可以看到,钱包价值的总体变化趋势是在慢慢增大,其变化范围大约是一个绿色虚线上下界划出的“通道”。(曲线可以被围在这么一个正合乎常规的“通道”中,也从侧面反映了规律1的合理性,说明了并不是均匀分布的随机数)

从另一个平均数的图中也可以看出这一规律。

图3. 平均数随序列数的变化曲线

在样本中,1000价值的钱包被分成100份,均值为10。然而在图3中我们可以看到在最后一个钱包之前,平均数一直低于10,这就说明了一开始的钱包价值偏低,一直被后期的钱包价值拉着往上走,后期的钱包价值更高。

3. 当然平均数的图还可以透露出另一个规律,那就是最后的那一个人往往容易走运抽得比较多。因为最后那一个人是钱包剩下多少就拿多少的,而之前所有人的平均数 都低于10,所以至少保证了最后一个人会高于平均值。在本样本中,98号钱包抽到35,而最后一份钱包抽到46。

综上,根据样本猜测:

1. 抽到的钱大多数时候跟别人一样少,但一旦一多,就容易多很多。

2. 越是抽后面的钱包,钱越容易多。

3. 最后一个人往往容易撞大运。

点评:这种明显很实际有差异,小编每次不管什么时候抢都是几毛钱。

第二位同学写了一个简单python 代码

据观察,红包分钱满足以下几点:

1.不会有人拿不到钱

2.不会提前分完

3.钱的波动范围很大

红包在一开始创建的时候,分配方案就订好了。抢红包的时候,不过是挨个pop up而已。

因此 python 代码如下:

  1. def weixin_divide_hongbao(money, n): 
  2. divide_table = [random.randint(110000for x in xrange(0, n)] 
  3. sum_ = sum(divide_table) 
  4. return [x*money/sum_ for x in divide_table] 

不过上述算法还有两个小问题:

1.浮点数精度问题

2.边界值的处理

第三位同学按照网上流传的python写了一个java的版本

  1. int j=1
  2. while(j<1000
  3. int number=10
  4. float total=100
  5. float money; 
  6. double min=0.01
  7. double max; 
  8. int i=1
  9.  
  10. List math=new ArrayList(); 
  11. while(i<number) 
  12.  
  13. max = total- min*(number- i); 
  14. int k = (int)((number-i)/2); 
  15. if (number -i <= 2
  16. {k = number -i;} 
  17. max = max/k; 
  18. money=(int)(min*100+Math.random()*(max*100-min*100+1)); 
  19. money=(float)money/100
  20. total=total-money; 
  21. math.add(money); 
  22. System.out.println("第"+i+"个人拿到"+money+"剩下"+total); 
  23. i++; 
  24. if(i==number) 
  25. math.add(total); 
  26. System.out.println("第"+i+"个人拿到"+total+"剩下0"); 
  27.  
  28. System.out.println("本轮发红包中第"+(math.indexOf(Collections.max(math))+1)+"个人手气最佳"); 
  29. j++; 

第四位同学的这种算法看起来非常科学。

他认为:

1、每个人都要能够领取到红包;

2、每个人领取到的红包金额总和=总金额;

3、每个人领取到的红包金额不等,但也不能差的太离谱,不然就没趣味;

4、算法一定要简单,不然对不起腾讯这个招牌;

正式编码之前,先搭建一个递进的模型来分析规律

设定总金额为10元,有N个人随机领取:

N=1

则红包金额=X元;

N=2

为保证第二个红包可以正常发出,第一个红包金额=0.01至9.99之间的某个随机数

第二个红包=10-第一个红包金额;

N=3

红包1=0.01至0.98之间的某个随机数

红包2=0.01至(10-红包1-0.01)的某个随机数

红包3=10-红包1-红包2

……

  1. header("Content-Type: text/html;charset=utf-8");//输出不乱码,你懂的 
  2. $total=10;//红包总额 
  3. $num=8;// 分成8个红包,支持8人随机领取 
  4. $min=0.01;//每个人最少能收到0.01元 
  5.  
  6. for ($i=1;$i<$num;$i++) 
  7.     $safe_total=$total-($num-$i)*$min;//随机安全上限 
  8.     $money=mt_rand($min*100,$safe_total*100)/100; 
  9.     $total=$total-$money; 
  10.     echo '第'.$i.'个红包:'.$money.' 元,余额:'.$total.' 元 <br/>'; 
  11. echo '第'.$num.'个红包:'.$total.' 元,余额:0 元'; 

输入一看,波动太大,这数据太无趣了!

第1个红包:7.48 元,余额:2.52 元

第2个红包:1.9 元,余额:0.62 元

第3个红包:0.49 元,余额:0.13 元

第4个红包:0.04 元,余额:0.09 元

第5个红包:0.03 元,余额:0.06 元

第6个红包:0.03 元,余额:0.03 元

第7个红包:0.01 元,余额:0.02 元

第8个红包:0.02 元,余额:0 元

改良一下,将平均值作为随机安全上限来控制波动差

  1. header("Content-Type: text/html;charset=utf-8");//输出不乱码,你懂的 
  2. $total=10;//红包总额 
  3. $num=8;// 分成8个红包,支持8人随机领取 
  4. $min=0.01;//每个人最少能收到0.01元 
  5.  
  6. for ($i=1;$i<$num;$i++) 
  7.     $safe_total=($total-($num-$i)*$min)/($num-$i);//随机安全上限 
  8.     $money=mt_rand($min*100,$safe_total*100)/100
  9.     $total=$total-$money; 
  10.     echo '第'.$i.'个红包:'.$money.' 元,余额:'.$total.' 元 <br/>'
  11. echo '第'.$num.'个红包:'.$total.' 元,余额:0 元'

输出结果见下图

第1个红包:0.06 元,余额:9.94 元

第2个红包:1.55 元,余额:8.39 元

第3个红包:0.25 元,余额:8.14 元

第4个红包:0.98 元,余额:7.16 元

第5个红包:1.88 元,余额:5.28 元

第6个红包:1.92 元,余额:3.36 元

第7个红包:2.98 元,余额:0.38 元

第8个红包:0.38 元,余额:0 元

小结:

小编觉得这完全可以理解成一个红包引发的血案,小编仅仅列举了几个,还有一些工程学的同学直接抛出了数学模型、离散函数等等,但是无论算法是简单还是复杂,玩的开心就够了。

【责任编辑:chenqingxiang TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

读 书 +更多

戴尔“血汗工厂”调查报告

去年11月至今年8月间,香港学生组织大学师生监察无良企业行动(以下简称SACOM)通过调查发现,戴尔公司位于东莞的三家代工厂严重违反了《劳...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊